Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
a__eq(0, 0) → true
a__eq(s(X), s(Y)) → a__eq(X, Y)
a__eq(X, Y) → false
a__inf(X) → cons(X, inf(s(X)))
a__take(0, X) → nil
a__take(s(X), cons(Y, L)) → cons(Y, take(X, L))
a__length(nil) → 0
a__length(cons(X, L)) → s(length(L))
mark(eq(X1, X2)) → a__eq(X1, X2)
mark(inf(X)) → a__inf(mark(X))
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(length(X)) → a__length(mark(X))
mark(0) → 0
mark(true) → true
mark(s(X)) → s(X)
mark(false) → false
mark(cons(X1, X2)) → cons(X1, X2)
mark(nil) → nil
a__eq(X1, X2) → eq(X1, X2)
a__inf(X) → inf(X)
a__take(X1, X2) → take(X1, X2)
a__length(X) → length(X)
Q is empty.
↳ QTRS
↳ DirectTerminationProof
Q restricted rewrite system:
The TRS R consists of the following rules:
a__eq(0, 0) → true
a__eq(s(X), s(Y)) → a__eq(X, Y)
a__eq(X, Y) → false
a__inf(X) → cons(X, inf(s(X)))
a__take(0, X) → nil
a__take(s(X), cons(Y, L)) → cons(Y, take(X, L))
a__length(nil) → 0
a__length(cons(X, L)) → s(length(L))
mark(eq(X1, X2)) → a__eq(X1, X2)
mark(inf(X)) → a__inf(mark(X))
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(length(X)) → a__length(mark(X))
mark(0) → 0
mark(true) → true
mark(s(X)) → s(X)
mark(false) → false
mark(cons(X1, X2)) → cons(X1, X2)
mark(nil) → nil
a__eq(X1, X2) → eq(X1, X2)
a__inf(X) → inf(X)
a__take(X1, X2) → take(X1, X2)
a__length(X) → length(X)
Q is empty.
We use [23] with the following order to prove termination.
Recursive path order with status [2].
Precedence:
mark1 > aeq2 > true
mark1 > aeq2 > false
mark1 > aeq2 > eq2
mark1 > ainf1 > cons2 > s1
mark1 > ainf1 > cons2 > take2
mark1 > ainf1 > inf1
mark1 > atake2 > cons2 > s1
mark1 > atake2 > cons2 > take2
mark1 > atake2 > nil
mark1 > alength1 > 0
mark1 > alength1 > s1
mark1 > alength1 > length1
Status:
length1: multiset
mark1: [1]
alength1: multiset
aeq2: multiset
eq2: multiset
0: multiset
nil: multiset
atake2: multiset
cons2: multiset
true: multiset
false: multiset
s1: multiset
take2: multiset
inf1: multiset
ainf1: multiset